

Microsoft Corporation

One Microsoft Way
Redmond, WA 98052-6399

(206) 882-8080

MicrosoftÒ Object Linking
and Embedding (OLE)
Today and Tomorrow

Technology Overview

December 1993

Microsoft OLE Today and Tomorrow Technology Overview

Introduction
Microsoft’s Object Linking and Embedding (OLE) specification offers a variety of ways to integrate
application components, including features such as visual editing, Drag and Drop between
applications, OLE Automation, and structured storage for objects.

The capabilities of OLE are powerful and compelling, and OLE 2.0 has recently received two
prestigious industry awards: a Technical Excellence award from PC Magazine and the MVP award
for software innovation from PC/Computing. Moreover, more than 30 applications using OLE 2.0
are shipping today, with hundreds more scheduled to appear during the next six to twelve months.

There is far more to OLE than desktop application integration. To support its award-winning
integration features, OLE defines and implements a mechanism that allows applications to “connect”
to each other as software “objects” — collections of data and accompanying functions to manipulate
the data. This connection mechanism and protocol is called the Component Object Model. The many
user-oriented and document-centric features of OLE are built on the Component Object Model’s
simple and fully extensible object architecture. In other words, OLE is a projection into the desktop
space of a new and powerful general-purpose technology for building distributed, evolving object
systems.

This paper looks briefly at the business reasons for the rapid movement in the computer industry to
object-oriented software. It then reviews some of the capabilities of the Component Object Model,
with special emphasis on its ability to provide a robust system model for seamless connections
between software components running across multiple computers on a network. It concludes with
information about the product direction of Microsoft and Digital Equipment Corporation which will
result in products that allow OLE-based applications to interact with software objects running on a
variety of UNIXÒ-based and other server platforms using the same programming model and
communications layer used by OLE between MicrosoftÒ-based systems.

The Business Benefits of Objects
As its name suggests, the OLE Component Object Model is based on the notion of a component. A
component is a reusable piece of software that can be “plugged into” other components from other
vendors with relatively little effort. For example, a component might be a spelling checker sold by
one vendor that can be plugged into several different word processing applications from multiple
vendors. Or it might be a specialized transaction monitor that can control the interaction of a number
of database servers. In contrast, traditional applications are monolithic, which means that they come
prepackaged with a wide range of features, most of which can’t be removed or replaced with
alternatives.

Component software provides a much more productive way to design, build, sell, use, and reuse
software. It has significant implications for software vendors, end users, and corporations:

 For vendors, component software provides a single model for interacting with other
applications and the distributed operating system. While it can readily be added to existing
applications without fundamental rewriting, it also provides the opportunity to modularize
applications and to incrementally replace system capabilities where appropriate. The advent of
component software will help create a more diverse set of market segments and niches for small,
medium and large vendors.

 For users, component software means a much greater range of software choices, coupled with
better productivity. As users see the possibilities of component software, demand is likely to

Page 1

Microsoft OLE Today and Tomorrow Technology Overview

increase for specialized components to be purchased at a local software retail outlet and plugged
into applications.

 For corporations, component software can mean lower costs for corporate computing, helping
IS departments work more efficiently, and enabling corporate computer users to be more
productive. IS developers may spend less time developing general-purpose software components
and more time developing “glue” components or components that solve business-specific needs.
Existing applications do not need to be rewritten to take advantage of a component architecture.
Instead, corporate developers can create object-based “wrappers” that encapsulate the legacy
application and make its operations and data available as an object to other software components
in the network.

Objects that conform to the Microsoft Component Object Model are known as component objects.
As a long-term strategy, the concept of component objects consists of both current and future
technologies that are designed to facilitate the development and use of component software. OLE 2.0
is the first step in the evolution of component objects. Future implementations of OLE will be
designed to use the same basic mechanisms of the Component Object Model and be upward-
compatible with OLE 2.0 while providing a range of additional features, including the ability for
objects to communicate over the network. The investments that ISVs and IS developers make in
implementing OLE technology will be protected in the long term by Microsoft’s investments in
future versions of OLE and Windows.

OLE Today and Tomorrow
OLE and its Component Object Model are the first steps in a major path of innovation for Microsoft
systems. OLE is critically important for the following reasons.

 Binary standard for objects. OLE defines a completely standardized way for objects to be
created and to communicate with one another. Unlike traditional object-oriented programming
environments, these mechanisms are independent of the applications that use object services and
of the programming language used to create the objects. This binary standard will be used
extensively in future versions of the Microsoft WindowsÔ operating system and will enable a
wide market for component software.

 Compelling collection of interfaces. Software architectures become more interesting when
useful products are shipping based on the architecture. While other vendors and some consortia
have defined high-level object architectures and specifications for language-independent object
systems, only ISVs using OLE have delivered to the mass market a compelling set of
interoperable applications based on object technology.

 True system object model. To be a true system model, an object architecture must allow a
distributed, evolving system to support millions of objects without risk of erroneous connections
of objects and other problems related to strong typing or definition of objects. OLE’s
Component Object Model meets those requirements.

 Distributed capabilities. Many single-process object models and programming languages exist
today, and a few distributed object systems are available. However, none provides an identical
programming model for small, in-process objects and potentially large, cross-network objects.
Moreover, security is required. Microsoft’s OLE has these capabilities factored in.

Binary Standard for Objects
OLE enables interoperability among objects that are written by different programmers from different
companies. For example, a spreadsheet object from one vendor can connect to a database object
from another vendor and import database records into the cells of its spreadsheet. As long as both
objects support a predefined interface for data exchange, the spreadsheet and database don’t have to

Page 2

Microsoft OLE Today and Tomorrow Technology Overview

know anything about each other’s implementation, other than how to connect through the standard
mechanism defined by the Component Object Model and exchange data through the common
interface.

The OLE Component Object Model Provides a Standard Way to
Communicate

Without a binary standard for interobject communication and a standard set of communication
interfaces, programmers face the daunting task of writing a large number of procedures, each of
which is specialized for communicating with a different type of application, or perhaps recompiling
their applications depending on the other components with which they need to interact. Moreover, if
the mechanism used for object interaction is not extremely efficient, PC software developers
pressured by size and performance requirements simply would not use it. Finally, object
communication must be language-independent since programmers cannot and should be forced to
use a particular programming language to interact with the system and other applications.

The OLE Component Object Model meets these challenges. In OLE, applications interact with each
other and with the system using collections of function calls or methods, called interfaces. An
interface is a strongly typed “contract” between software components that is designed to provide a
small but useful set of semantically related operations. All OLE objects support a method called
QueryInterface that allows for very efficient negotiation or communication between components to
find which interfaces they share. The small portions of functionality defined in the interfaces plus
OLE’s inherent interface negotiation protocol allow software components to interact with one
another in simple or complex ways depending on the needs of the component. They also allow for
change and graceful evolution within the object system, since new interfaces can be introduced and
discovered safely and efficiently without disturbing existing patterns of interaction between
components.

At the lowest level, OLE object interaction is extremely fast and simple. Once the connection
between software components is established, method invocations on OLE objects are simply indirect
function calls through two memory pointers. As a result, the performance overhead of interacting
with an OLE object in the same address space as the calling code is negligible — only a handful of
processor instructions slower than a standard function call, and the overhead is even less considering
that a typical function call would have to contain some kind of parameter to identify the entity that
the caller seeks to act upon. Thus, there is no performance barrier to using OLE objects pervasively,
even on low-end PCs.

The simplicity of the OLE model also provides language independence. Any programming language
that can create structures of pointers and explicitly or implicitly call functions through pointers —
languages such as C, C++, Pascal, Ada, Small TalkÒ, and the Microsoft Visual BasicÒ programming
system — can create and use OLE objects immediately. Other popular languages are being extended
to provide direct OLE support since OLE-style programming is planned to be an inherent aspect of
future versions of Microsoft Windows. Object-oriented languages can provide their own higher-level

Page 3

Microsoft OLE Today and Tomorrow Technology Overview

mapping between language objects and OLE objects, and can also provide class libraries to make
OLE programming easy.

Future versions of the Microsoft Windows operating system are planned to use OLE-style interfaces
extensively in areas where new services are defined. Facilities as diverse as visual controls,
multimedia services and distributed security are targeted to be defined and programmed through the
Component Object Model. The existing Win32Ò Application programming interface will continue
to be needed and fully supported; at the same time, object-based capabilities will gradually become
pervasive, blurring the distinction between applications and the system and providing for easily
replaceable components within the Windows operating system itself.

OLE: A Compelling Collection of Interfaces
Object models are interesting to theoreticians and software designers, but are unimportant to users.
As discussed throughout this paper, OLE is based on a powerful, general-purpose object system.
Microsoft’s Component Object Model provides a language-independent binary standard for object
interaction, and strongly typed components that can scale safely to distributed networks comprised of
millions of objects. But the primary reason OLE will succeed in the marketplace where many object
systems fail is that the immediate benefits of OLE to users are obvious and compelling.

OLE provides visual editing, Drag and Drop between applications, OLE Automation, and structured
storage for objects. Visual editing allows two or more applications to cooperate in the editing of
compound documents and display windows such that the user sees only a single document or
window, with multiple editors loading themselves dynamically depending on which part of the
document is in use. Drag and Drop allows users to select an application object such as a document
or chart with the mouse and drop in into another application window where it will be copied or
moved. OLE Automation provides a standard means for macro and script languages to drive one or
more applications by viewing and manipulating a set of internal application-level objects, such as
paragraphs, cells, rows, tables, forms, with methods for altering the object’s state. Finally, structured
storage allows applications to cooperate in the creation of compound files supporting a variety of
native data types stored as nested objects within a standard file format.

OLE 2.0 has garnered awards and praise from the industry. According to Michael J. Miller, editor
in chief of PC Magazine, “Object Linking and Embedding 2.0 offers a far easier, far better method
of integration, and it will fundamentally change our expectations for the next generation of software”
(PC Magazine Dec. 7, 1993, p.78). Columnist Jim Seymour said, “OLE 2.0 is a big, big win for both
software developers and PC users. I’d go so far as to say that it’s the most important development in
PC software of 1993” (PC Magazine Dec. 7, 1993 p. 98).

A True System Object Model
Object technology is proliferating and moving outside the realm of object-oriented languages. One
area of interest is the development of language-independent class library technology. This kind of
technology solves the “C++ in a DLL” problem — the problem of recompiling all code that uses a
class whenever changes are made to the class itself — and can be useful for application
development. But it is not appropriate for a system object model.

There are several fundamental limitations of class library technology when used to build distributed,
evolving object systems.

 Strong typing. Distributed object systems have potentially millions of interfaces and software
components that need to be uniquely identified. Any system that uses human-readable names
for finding and binding to modules, objects, classes, or methods is at risk. The probability of a
collision between human-readable names is quite high in a complex system. The result of a
name-based identification will inevitably be the accidental connection of two or more software
components that were not designed to interact with each other, and a resulting error or crash —
even though the components and system had no bugs and worked as designed.

Page 4

Microsoft OLE Today and Tomorrow Technology Overview

By contrast, OLE uses globally unique identifiers — 128-bit integers that are virtually
guaranteed to be unique in the world across space and time — to identify every interface, type
and class. Human-readable names are assigned only for convenience and are locally scoped.
This helps ensure that OLE components do not accidentally connect to an object or via an
interface or method, even in networks with millions of objects.

 No implementation inheritance. Implementation inheritance — the ability of one component to
“subclass” or inherit some of its functionality from another component — is a very useful
technology for building applications. But more and more experts are concluding that it can
create problems in a distributed, evolving object system. The problem is well-documented in
academic literature, which calls it “the fragile base-class problem.” The problem with
implementation inheritance is that the “contract” or relationship between components in an
implementation hierarchy is not clearly defined; it is implicit and ambiguous. When the parent
or child component changes its behavior unexpectedly, the behavior of related components may
become undefined. This is not a problem when the implementation hierarchy is under the
control of a defined group of programmers who can make updates to all components
simultaneously. But it is precisely this ability to control and change a set of related components
simultaneously that differentiates an application, even a complex application, from a true
distributed object system. So while implementation inheritance can be a very good thing for
building applications, it is risky in a system object model.

OLE does provide a code reuse mechanism called “aggregation.” Using this model, a set of
objects can work together in a well-defined manner to appear to other software components as a
single object. Aggregation provides the benefits of code reuse while maintaining explicit
relationships between all objects and avoiding the risks of implementation inheritance.

 Single programming model. A problem related to implementation inheritance is the issue of a
single programming model for in-process objects and out-of-process/cross-network objects. In
the former case, class library technology permits the use of features that don’t work outside a
single address space, much less across a network. For example, implementation inheritance
typically does not work outside a single address space. In other words, the programmer can’t
subclass a remote object. Similarly, features like public data items in classes that can be freely
manipulated by other objects within a single address space don’t work across process or network
boundaries. OLE’s Component Object Model has a single interface-based binding model and has
been carefully designed to avoid any differences between the local and remote programming
model.

 Security. For a distributed object system to be useful in the real world it must provide a means
for secure access to objects and the data they encapsulate. While OLE 2.0 does not implement
security features, it has been designed to be upwardly compatible with future implementations of
OLE that provide a full range of security features. Object servers can be modified to take
advantage of secure object invocations, but unmodified OLE 2.0 clients can participate in fully
secure distributed environments.

The issues surrounding system object models are complex for corporate customers and ISVs making
planning decisions in this area. OLE meets the challenges, and is a solid foundation for an
enterprise-wide computing environment.

Distributed Capabilities for OLE
Today’s version of OLE supports a rich set of features for integrating information on a user’s desktop
computer. But imagine if users could easily integrate objects on different computers as if they were
all local. With this capability, a user in San Francisco could, for example, link a range of
spreadsheet cells on their desktop to a corporate database in New York. Each time data in the
database was updated, the user’s spreadsheet would automatically reflect these changes.

To support this level of object integration across different computers, Microsoft is developing a new
implementation of OLE that takes full advantage of the inherent capabilities of the Component

Page 5

Microsoft OLE Today and Tomorrow Technology Overview

Object Model. Distributed object communication is the next logical step for OLE 2.0. It provides
the same kind of standard interobject cooperation as today’s OLE 2.0, but allows this cooperation to
take place across networks of computers. For example, an address-book application on a Windows-
based computer can connect to a different address-book object on a UNIX-based system and import
its address information without the user knowing that the interaction is taking place between
different platforms over a network.

Remote Services With No Added Effort
Significantly, the new implementation of OLE requires no changes to existing applications. An
existing OLE 2.0 application can immediately begin linking to other applications on other machines
— without any changes the application’s source code, and without recompiling the application. In
other words, applications automatically receive these remote capabilities without any effort on the
part of users or programmers.

Applications don’t need to be changed because only the underlying object communication
mechanism (which is transparent to applications) is being extended. The new version of OLE makes
no changes to the OLE 2.0 application programming interface (API) and object interfaces, so
applications call the same OLE 2.0 functions in the same way. If the services that support these
function calls happen to be located on a different computer, the OLE infrastructure sends the request
to the remote service automatically and invisibly.

How Distributed OLE Works
Distributed capabilities are a natural extension of the OLE Component Object Model. The most
significant difference between current and future implementations of OLE is the remote procedure
call mechanism used to transfer operations and data between objects. In OLE 2.0, a “lightweight”
remote procedure call mechanism (LRPC) is used for interobject communication within a single
computer. LRPC allows objects to pass information across the process boundaries that protect
applications from each other within the operating system. In other words, LRPC is an interprocess
communication facility that allows processes (such as objects) to talk to one another on the same
machine. The new implementation of OLE extends OLE 2.0 by adding object communication across
a network, using Microsoft RPC rather than LRPC.

RPC systems allow applications to call remote procedures as if these procedures were located within
the same address space as the calling application. With RPC, an application calls a remote
procedure in the same way it would call a local (in-process) procedure, but in reality, that procedure
may be located in another process on the same machine, or on a different machine across the
network. Since the transfer of data between the calling application and responding procedure is
handled transparently, it is possible to build applications that run across multiple processes or
computers without changing the programming model used by a non-distributed applications.

Microsoft RPC adds many capabilities to LRPC, the most notable of which is the
ability to make RPC calls across the network. A more subtle but equally
important aspect of Microsoft RPC is a set of accompanying tools that
automatically generate “marshaling” code that packages data for transmission.
This capability allows programmers to easily define new object interfaces that
allow objects to communicate outside a single process. Moreover, Microsoft RPC
is compatible with the RPC standard defined by the Open Software Foundation in
its distributed computing environment (DCE) specification. Because Microsoft
RPC is based on DCE RPC, systems that support Microsoft RPC can exchange
information with a wide range of DCE-based systems, including OpenVMSÔ,
MVS, AS/400Ò, and more than 20 varieties of UNIX. Microsoft RPC adds a few
upward-compatible extensions to the DCE Interface Definition Language (IDL)
used to define objects, but does not change the wire-level protocols.
While RPC itself provides a number of crucial capabilities that a distributed
object system needs, such as network transport independence, security and

Page 6

Microsoft OLE Today and Tomorrow Technology Overview

name service APIs, and data conversion between incompatible processor and
operating system architectures, RPC is not enough. OLE’s object layer above
RPC provides further abstraction and simplification of the distributed
programming issues as well as the unique polymorphic capabilities of objects.

At the object layer, OLE 2.0’s LRPC architecture already provides transparency between local
instances of objects and non-local instances (objects outside the address space of the calling
program). Achieving this transparency is the most difficult aspect of building a distributed object
system. While there is a substantial amount of work involved in adding a full RPC mechanism (and
related capabilities such as distributed security), the new implementation of OLE does not change the
overall architecture.

In the figure below, a client application connects to an object’s server that is running on a different
machine. An RPC proxy running on the client’s machine enables the client to communicate with an
object server as if it were on the same machine. The proxy simply packages function calls into a
standard RPC message that can be transmitted over the network using the network transport running
on the client’s machine. A corresponding RPC stub on the server receives the RPC message from the
client, unpackages it, and passes it to the object’s server. To the server, the process is the same as if
it were communicating with a local client.

RPC Allows Applications to Call Methods on Remote Systems

Note that the words “client” and “server” simply refer to the user and provider of object-based
services, respectively. There is no connotation that the client is a desktop machine and the server is
a large back-end machine. In fact, in OLE most interaction between applications involves a two-way
relationship in which both software components are clients and servers to each other simultaneously.

Distributed Objects Will Redefine Computing
OLE with distributed object support allows a single application to be split into a number of different
component objects, each of which can run on a different computer. Since OLE provides network-
transparency, these components do not appear to be located on different machines. The entire
network appears to be one large computer with enormous processing power and capacity. For
example, a database application could be built as a set of components: a query engine, a report
engine, a forms builder, and a transaction manager. Each of these components could run on a
machine suited to the amount of processing power, I/O bandwidth and disk capacity required for it.
As a result, computing can become much more efficient because software can be more closely
matched with the exact hardware power required. Computing also becomes much more scalable,

Page 7

Microsoft OLE Today and Tomorrow Technology Overview

since the virtually unlimited resources of an entire network can be leveraged by a single application
or a group of applications.

Common Object Model
Recognizing the need to allow objects on different types of operating systems to interact, Microsoft
and Digital have developed an architecture to allow interoperation of OLE and Digital’s multi-
platform object system, ObjectBrokerÔ. This architecture, called Common Object Model (COM),
defines a common DCE RPC-based protocol and a subset of core OLE functions that will be
supported by Digital and other interested companies within their products. The Common Object
Model is a direct outgrowth of the Component Object Model and provides full upward compatibility
with OLE. When OLE and ObjectBroker work together, the Windows, Windows NTÔ and
Windows NTÔ Advanced Server operating systems can connect to objects running on a variety of
platforms including OSF/1Ô, HP-UXÒ, SunOSÔ, IBMÒ AIXÒ, ULTRIXÔ, and OpenVMS.

To show how OLE operates across platforms using COM, Microsoft and Digital have demonstrated a
sample application that connects an object running on the OSF/1 operating system with objects on a
Microsoft Windows NT-based computer. The sample application supports a standard OLE 2.0-
compatible “hot link” between Microsoft Excel and a stock quote object running on the OSF/1
server.

Transparently to the user, the OLE elements in ObjectBroker allow the Microsoft Excel spreadsheet
to be linked to its source data on the OSF/1 machine. Together, OLE and ObjectBroker hide the new
mechanism used to find the OSF/1 server and dynamically transfer stock quote data into the cells of
the Microsoft Excel spreadsheet. Users watch the stock data update in real time on their screen,
without having to know anything about the different sources of the data.

Demonstration: OLE Allows Object Links to Exist Across
Heterogeneous Networks

For users, the benefits are numerous. With the Common Object Model, users can access information
on virtually any platform in the enterprise without being concerned about the type of application they
are connecting to, or the type of communication mechanism needed to reach that object. Using
simple techniques such as OLE 2.0’s Drag and Drop, users can manipulate objects throughout the
enterprise without knowing or caring where they are located or which application was used to create
them.

Microsoft and Digital are committed to following an open process for the Common Object Model
that will address broad industry requirements. Design reviews for system integrators, corporate

Page 8

Microsoft OLE Today and Tomorrow Technology Overview

application developers, independent software vendors, and other interested third parties are planned
for the first half of 1994. Prior to these reviews, draft publications will be published for review and
comment.

Windows NT-based Client

Windows NT Advanced Server UNIX-based Server

Component Object

Corporate Network

Personal Computer
Running Microsoft Windows

Apple Macintosh

OLE and ObjectBroker Enable Enterprise Computing at the Object Level

An Evolutionary Path for Windows
Today’s OLE 2.0 technology is a major foundation piece in Microsoft’s strategy operating system
direction. The next major releases of Microsoft Windows NT (code-named “Cairo”) and Windows
(code-named “Chicago”) will build on OLE and be compatible with it, respectively. Cairo is
intended to add a range of capabilities designed to make creating, accessing, manipulating,
organizing and sharing information easier for computer users. It will offer an advanced object-
oriented environment that focuses users on manipulating information through queries on content and
properties, not on manipulating applications or groping around networks. To do this, Cairo will
integrate a number of new and existing technologies that change the way people use computers while
making computers much more intuitive to use. Similarly, Chicago will ship with full OLE 2.0
support, and future versions of Chicago will provide OLE with distributed capabilities as well as
other aspects of the Cairo technology.

Although the evolution from OLE 2.0 to Cairo and Chicago offers dramatic changes in the way
computers will be used, the path to this functionality will be smooth for existing applications. Much
of the advanced technology that will be available in the future will simply be inherited by existing
applications, with no changes to the applications themselves. Moreover, the OLE style of object
programming will be used extensively in future Microsoft operating systems to implement
replaceable and modular system services. Finally, the Microsoft and Digital Common Object Model
helps ensure that OLE’s distributed object capabilities will be available on a wide range of UNIX
and OpenVMS platforms as well as desktop computers and Windows NT-based servers. Therefore,

Page 9

Microsoft OLE Today and Tomorrow Technology Overview

independent software vendors and corporate IS engineers can begin implementing solutions today
using OLE 2.0 and be assured that this solution can tap into the power of future distributed,
heterogeneous object-based computing systems.

#########

Microsoft, Visual Basic and Win32 are registered trademarks and Windows, Windows NT, Windows NT Advanced Server and
the Windows logo are trademarks of Microsoft Corporation.
UNIX is a registered trademark of UNIX System Laboratories, a wholly owned subsidiary of Novell, Inc.
Small Talk is a registered trademark of Xerox Corporation.
OpenVMS, ObjectBroker and ULTRIX are trademarks of Digital Equipment Corporation.
IBM, AS/400 and AIX are registered trademarks of International Business Machines Corporation.
OSF/1 is a trademark of Open System Foundation, Inc.
HP-UX is a registered trademark of the Hewlett-Packard Company.
SunOS is a trademark of Sun Microsystems, Inc.
Apple and Macintosh are registered trademarks of Apple Computer, Inc.

This document is furnished for informational purposes only and is subject to change without notice.
MICROSOFT MAKES NO WARRANTY, EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT.

The information contained in this document represents the current view of Microsoft Corporation on
the issues discussed as of the date of publication. Because Microsoft must respond to changing
market conditions, it should not be interpreted to represent a commitment on the part of Microsoft,
and Microsoft cannot guarantee the accuracy of any information presented after the date of
publication.

Page 10

	Introduction
	The Business Benefits of Objects
	OLE Today and Tomorrow
	Binary Standard for Objects
	OLE: A Compelling Collection of Interfaces
	A True System Object Model
	Distributed Capabilities for OLE
	Remote Services With No Added Effort
	How Distributed OLE Works
	Distributed Objects Will Redefine Computing

	Common Object Model
	An Evolutionary Path for Windows

